General Information of Target

Target ID LDTP05280
Target Name Serine/arginine-rich splicing factor 2 (SRSF2)
Gene Name SRSF2
Gene ID 6427
Synonyms
SFRS2; Serine/arginine-rich splicing factor 2; Protein PR264; Splicing component, 35 kDa; Splicing factor SC35; SC-35; Splicing factor, arginine/serine-rich 2
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Sequence
MSYGRPPPDVEGMTSLKVDNLTYRTSPDTLRRVFEKYGRVGDVYIPRDRYTKESRGFAFV
RFHDKRDAEDAMDAMDGAVLDGRELRVQMARYGRPPDSHHSRRGPPPRRYGGGGYGRRSR
SPRRRRRSRSRSRSRSRSRSRSRYSRSKSRSRTRSRSRSTSKSRSARRSKSKSSSVSRSR
SRSRSRSRSRSPPPVSKRESKSRSRSKSPPKSPEEEGAVSS
Target Bioclass
Other
Family
Splicing factor SR family
Subcellular location
Nucleus
Function
Necessary for the splicing of pre-mRNA. It is required for formation of the earliest ATP-dependent splicing complex and interacts with spliceosomal components bound to both the 5'- and 3'-splice sites during spliceosome assembly. It also is required for ATP-dependent interactions of both U1 and U2 snRNPs with pre-mRNA. Interacts with other spliceosomal components, via the RS domains, to form a bridge between the 5'- and 3'-splice site binding components, U1 snRNP and U2AF. Binds to purine-rich RNA sequences, either 5'-AGSAGAGTA-3' (S=C or G) or 5'-GTTCGAGTA-3'. Can bind to beta-globin mRNA and commit it to the splicing pathway. The phosphorylated form (by SRPK2) is required for cellular apoptosis in response to cisplatin treatment.
Uniprot ID
Q01130
Ensemble ID
ENST00000359995.10
HGNC ID
HGNC:10783

Target Site Mutations in Different Cell Lines

Cell line Mutation details Probe for labeling this protein in this cell
CHL1 SNV: p.A74G .
DU145 SNV: p.S121G .
ETK1 SNV: p.R167L .
KO52 SNV: p.P95H .
SSP25 SNV: p.R167L .
T98G SNV: p.R133W .

Probe(s) Labeling This Target

ABPP Probe
Click To Hide/Show 19 Probe Related to This Target
Probe name Structure Binding Site(Ratio) Interaction ID Ref
P2
 Probe Info 
1.51  LDD0449  [1]
P8
 Probe Info 
1.64  LDD0451  [1]
DAyne
 Probe Info 
3.15  LDD0261  [2]
FBPP2
 Probe Info 
2.17  LDD0318  [3]
TH211
 Probe Info 
Y23(20.00); Y92(17.99)  LDD0260  [4]
C-Sul
 Probe Info 
9.08  LDD0066  [5]
STPyne
 Probe Info 
K162(10.00); K36(8.71); K52(2.00)  LDD0277  [6]
ONAyne
 Probe Info 
N.A.  LDD0273  [6]
Probe 1
 Probe Info 
Y23(13.80); Y44(35.41); Y110(19.96)  LDD3495  [7]
HHS-482
 Probe Info 
Y44(0.96)  LDD0285  [8]
HHS-475
 Probe Info 
Y23(0.38); Y110(0.88); Y44(1.05); Y92(1.16)  LDD0264  [9]
HHS-465
 Probe Info 
Y110(9.84); Y115(8.37); Y23(7.71); Y44(9.32)  LDD2237  [10]
5E-2FA
 Probe Info 
H99(0.00); H100(0.00)  LDD2235  [11]
ATP probe
 Probe Info 
N.A.  LDD0199  [12]
m-APA
 Probe Info 
H99(0.00); H100(0.00)  LDD2231  [11]
SF
 Probe Info 
Y3(0.00); Y110(0.00); Y115(0.00); Y92(0.00)  LDD0028  [13]
1c-yne
 Probe Info 
N.A.  LDD0228  [14]
Acrolein
 Probe Info 
N.A.  LDD0217  [15]
Crotonaldehyde
 Probe Info 
H99(0.00); H100(0.00)  LDD0219  [15]
PAL-AfBPP Probe
Click To Hide/Show 4 Probe Related to This Target
Probe name Structure Binding Site(Ratio) Interaction ID Ref
C087
 Probe Info 
7.84  LDD1779  [16]
C145
 Probe Info 
9.85  LDD1827  [16]
STS-2
 Probe Info 
N.A.  LDD0138  [17]
Staurosporine capture compound
 Probe Info 
3.00  LDD0083  [18]

Competitor(s) Related to This Target

Competitor ID Name Cell line Binding Site(Ratio) Interaction ID Ref
 LDCM0108  Chloroacetamide HeLa N.A.  LDD0222  [15]
 LDCM0116  HHS-0101 DM93 Y23(0.38); Y110(0.88); Y44(1.05); Y92(1.16)  LDD0264  [9]
 LDCM0117  HHS-0201 DM93 Y23(0.51); Y92(0.83); Y44(0.91); Y110(0.94)  LDD0265  [9]
 LDCM0118  HHS-0301 DM93 Y23(0.50); Y92(0.65); Y110(0.86); Y44(0.95)  LDD0266  [9]
 LDCM0119  HHS-0401 DM93 Y23(0.41); Y92(0.80); Y110(0.89); Y44(1.08)  LDD0267  [9]
 LDCM0120  HHS-0701 DM93 Y23(0.33); Y110(0.87); Y92(0.88); Y44(0.91)  LDD0268  [9]
 LDCM0107  IAA HeLa H99(0.00); H100(0.00)  LDD0221  [15]
 LDCM0123  JWB131 DM93 Y44(0.96)  LDD0285  [8]
 LDCM0124  JWB142 DM93 Y44(0.65)  LDD0286  [8]
 LDCM0125  JWB146 DM93 Y44(1.21)  LDD0287  [8]
 LDCM0126  JWB150 DM93 Y44(2.63)  LDD0288  [8]
 LDCM0127  JWB152 DM93 Y44(1.60)  LDD0289  [8]
 LDCM0128  JWB198 DM93 Y44(0.94)  LDD0290  [8]
 LDCM0129  JWB202 DM93 Y44(0.36)  LDD0291  [8]
 LDCM0130  JWB211 DM93 Y44(0.91)  LDD0292  [8]
 LDCM0109  NEM HeLa H100(0.00); H99(0.00)  LDD0223  [15]
 LDCM0019  Staurosporine Hep-G2 3.00  LDD0083  [18]

The Interaction Atlas With This Target

The Protein(s) Related To This Target

Enzyme
Click To Hide/Show 1 Protein(s) Interacting with This Target
Protein name Family Uniprot ID
Histone acetyltransferase KAT5 (KAT5) MYST (SAS/MOZ) family Q92993
Other
Click To Hide/Show 2 Protein(s) Interacting with This Target
Protein name Family Uniprot ID
Splicing factor U2AF 35 kDa subunit (U2AF1) Splicing factor SR family Q01081
Corepressor interacting with RBPJ 1 (CIR1) . Q86X95

References

1 Comparison of Different Competitive Proteome Profiling Approaches in Target Identification of Covalent Inhibitors. Chembiochem. 2022 Dec 16;23(24):e202200389. doi: 10.1002/cbic.202200389. Epub 2022 Nov 22.
2 Proteome-Wide Profiling of Cellular Targets Modified by Dopamine Metabolites Using a Bio-Orthogonally Functionalized Catecholamine. ACS Chem Biol. 2021 Nov 19;16(11):2581-2594. doi: 10.1021/acschembio.1c00629. Epub 2021 Nov 2.
3 Tranylcypromine specificity for monoamine oxidase is limited by promiscuous protein labelling and lysosomal trapping. RSC Chem Biol. 2020 Aug 12;1(4):209-213. doi: 10.1039/d0cb00048e. eCollection 2020 Oct 1.
Mass spectrometry data entry: PXD018580
4 Chemoproteomic profiling of kinases in live cells using electrophilic sulfonyl triazole probes. Chem Sci. 2021 Jan 21;12(9):3295-3307. doi: 10.1039/d0sc06623k.
5 Low-Toxicity Sulfonium-Based Probes for Cysteine-Specific Profiling in Live Cells. Anal Chem. 2022 Mar 15;94(10):4366-4372. doi: 10.1021/acs.analchem.1c05129. Epub 2022 Mar 4.
6 A Paal-Knorr agent for chemoproteomic profiling of targets of isoketals in cells. Chem Sci. 2021 Oct 15;12(43):14557-14563. doi: 10.1039/d1sc02230j. eCollection 2021 Nov 10.
Mass spectrometry data entry: PXD028270
7 An Azo Coupling-Based Chemoproteomic Approach to Systematically Profile the Tyrosine Reactivity in the Human Proteome. Anal Chem. 2021 Jul 27;93(29):10334-10342. doi: 10.1021/acs.analchem.1c01935. Epub 2021 Jul 12.
8 Chemoproteomic profiling of kinases in live cells using electrophilic sulfonyl triazole probes. Chem Sci. 2021 Jan 21;12(9):3295-3307. doi: 10.1039/d0sc06623k.
9 Discovery of a Cell-Active SuTEx Ligand of Prostaglandin Reductase 2. Chembiochem. 2021 Jun 15;22(12):2134-2139. doi: 10.1002/cbic.202000879. Epub 2021 Apr 29.
10 Global targeting of functional tyrosines using sulfur-triazole exchange chemistry. Nat Chem Biol. 2020 Feb;16(2):150-159. doi: 10.1038/s41589-019-0404-5. Epub 2019 Nov 25.
11 Global profiling of functional histidines in live cells using small-molecule photosensitizer and chemical probe relay labelling. Nat Chem. 2024 Jun 4. doi: 10.1038/s41557-024-01545-6. Online ahead of print.
Mass spectrometry data entry: PXD042377
12 Targeted Proteomic Approaches for Proteome-Wide Characterizations of the AMP-Binding Capacities of Kinases. J Proteome Res. 2022 Aug 5;21(8):2063-2070. doi: 10.1021/acs.jproteome.2c00225. Epub 2022 Jul 12.
13 Solid Phase Synthesis of Fluorosulfate Containing Macrocycles for Chemoproteomic Workflows. bioRxiv [Preprint]. 2023 Feb 18:2023.02.17.529022. doi: 10.1101/2023.02.17.529022.
Mass spectrometry data entry: PXD039931
14 Tunable Amine-Reactive Electrophiles for Selective Profiling of Lysine. Angew Chem Int Ed Engl. 2022 Jan 26;61(5):e202112107. doi: 10.1002/anie.202112107. Epub 2021 Dec 16.
15 ACR-Based Probe for the Quantitative Profiling of Histidine Reactivity in the Human Proteome. J Am Chem Soc. 2023 Mar 8;145(9):5252-5260. doi: 10.1021/jacs.2c12653. Epub 2023 Feb 27.
16 Large-scale chemoproteomics expedites ligand discovery and predicts ligand behavior in cells. Science. 2024 Apr 26;384(6694):eadk5864. doi: 10.1126/science.adk5864. Epub 2024 Apr 26.
Mass spectrometry data entry: PXD041587
17 Design and synthesis of minimalist terminal alkyne-containing diazirine photo-crosslinkers and their incorporation into kinase inhibitors for cell- and tissue-based proteome profiling. Angew Chem Int Ed Engl. 2013 Aug 12;52(33):8551-6. doi: 10.1002/anie.201300683. Epub 2013 Jun 10.
18 Comprehensive identification of staurosporine-binding kinases in the hepatocyte cell line HepG2 using Capture Compound Mass Spectrometry (CCMS). J Proteome Res. 2010 Feb 5;9(2):806-17. doi: 10.1021/pr9007333.